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Abstract 

We have shown in this paper that the relative acceleration between neighbouring particles 
in the field of an isolated mass is finite at the apparent singular surface r = 2m. The 
analysis is made both in Schwarzschild and Eddington-Finkelstein coordinate systems 
by using the equation of geodesic deviation. 

1. Introduction 

The role of singularity in the study of space-time structure has been of 
immense interest though the definition of the singularity itself has not been 
generally accepted. In the study of  the gravitational field of an isolated 
mass, the Schwarzschild surface r = 2m was once thought to be singular 
until the diagrammatic representation of its analytic extension was made 
(Fronsdal, 1959; Kruskal, 1960). So far, the arguments put forward for 
concluding that the Schwarzschild surface is non-singular in the space-time 
manifold have been mainly on the basis of the analysis of  the light-cone 
along a radial geodesic (Finkelstein, 1959; Misner, 1968). This has 
eventually led to the conclusion that the surface forms only an absolute 
event horizon (Penrose, 1969). 

In this paper we have shown that it is possible to arrive at the conclusion 
that the surface r = 2m is non-singular on purely physical grounds by 
considering the relative acceleration of freely falling particles studied 
through the equations of  geodesic deviation. In Section 2 we give the basic 
mathematical vocabulary of the equations of geodesic deviation and the 
method of obtaining relative acceleration. In Section 3 the tetrads have 
been constructed to which the curvature tensor Rh~jk is referred and the 
components of  relative acceleration are obtained both in Schwarzschild 
coordinates and Eddington-Finkelstein coordinates. In conclusion, an 
application of  this analysis is mentioned by considering an atom on the 
surface of a collapsing sphere as a system of  two freely falling particles in 
the gravitational field. 
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2. Equations of Geodesic Deviation 

The geometrical significance of geodesic deviation has been studied by 
Synge and Levi-Civita. Synge (1964) has given an elegant method of 
obtaining the equations of geodesic deviation in the form1- 

02q~ ~ )`'l~k2~--O (2.1) 
Os'--T + ~, jkz  ,t - -  

where t h denotes the infinitesimal displacement from a point P(u,v) on a 
geodesic A to the point Q(u,v + 6v) on B, a neighbouring geodesic, R~kz 
the curvature tensor, )`~= dx~/ds the unit tangent vector to the geodesic 
world-line A of one of the particles and s the proper time along A. In order 
to get the physical interpretation of (2.1), one could compare it with the 
analogous equations of Newtonian physics. Pirani (1957) has done this by 
referring (2.1) to a tetrad of which )`J is the time-like member (the four- 
velocity of the particle with world-line A) and the space-like triad 2~ ~ 
chosen such that it propagates parallel along the chosen geodesic A. 
Resolving tff, the displacement vector along the triad 2, ~, we get 

r/' = X~).=2 (2.2) 

where X= are three scalar point function. Using (2.2) in (2.1) we get the 
invariant form of the deviation equations 

d 2 X= 
ds = t- K~tJ XB = O 

where 

(2.3) 

K~ a = R,~k 2 h 2, i )`J ),o k (2.4) 

acceleration between the two particles under represents the relative 
consideration. 

In order to evaluate the acceleration components, we consider the metric 
of the space-time in which the particles are freely falling and solve the 
equation of geodesics 

d2 x~ U dxJ dxk = 
ds - -7-  + J~-d-s--d-S-s 0 (2.5) 

for any one of them to get the components of four-velocity dx~/ds (= 2t). 
Next we have to construct the orthonormal triad 2{,) such that 

glj)J 2, J = 0, gij 2{~) 2~) = -1  (2.6) 

Having thus obtained the components of the tetrad 2k ~ = (~,i,2% we can 
compute the acceleration components K~a. 

t We use the notation that Latin indices take values 1, 2, 3, 4 (x 4 = time coordinate) 
whereas the Greek indices take the values 1,2, 3. 
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3. Acceleration Components 
A. Schwarzschild Coordinates 

The field of an isolated mass particle is given by the well-known space- 
time metric 

ds2=-(1-2-~)-ldr2-r2(dO2 +sinZOd~o2)+(1-2~mr )dt2 (3.1) 

In this field the equations of motion (2.5) for a freely falling particle along 
the radial direction (0 = ~b = const) are given by 

d2r ~ {1-2m~-~ r ]  m/  2m\ /dt~ 2 , 

d z t 2m [ 2m\ -1 | (3.2) 
+TrY-r) =0) 

Solving (3.2), using (3.1), we get the four-velocity 

2 ' = { (  -2~2 2m'1/2~'.o/,0,0, (1 - 2my/2(1-2--~) ! \ (3.3) 

where at r = ro the particle is assumed to be at rest. 
We now obtain the space-like triad 2~,) after using (3.1) and (3.3) in 

(2.6) to be 

2x' = {( 1 --~f]2m~l/:' 0 0 / 2 m '  ' \  r 2m11/2(1-2~) - 1 } r - ~ /  \ 

Thus the tetrad 2k ~ = (2~ ~, ~.~) is determined. 
For the space-time (3.1) the non-vanishing independent components of 

Rh~jk are given by 

(3.5) 
2m 

R1414 = - -~ 

R2323 = --2mr 
sin 2 0 
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Using (3.3), (3.4) and (3.5) in (2.4), we find that 

2m 
Kll = - -  K22 = K33 . . . .  

r 3 

K,B = 0 ,  ~ 3  

m 

r 3 (3.6) 

B. Eddington-Finkelstein Coordinates 

The space-time metric is now given by (Eddington, 1924; Finkelstein, 
1959) 

ds2= + (1-2--~)du2- 2drdu-rZ(dOZ +sin20d492) (3.7) 

The equations of motion of one of the particles are now given by 

dZr 2mdr du 
ds 2 r: ds ds 

which on integration give 

ds 

ds 

m (  2_~m)[du~ 2 
+-~ 1 -  \as] = 0  

ds 2 + r 2 kds] = 0 

m 1/2 

ro / 

2--m]l /2~(l -2--m-m]l /2](1-~)  - ~ r o  / \ ro /  _1 

(3.8) 

(3.9) 

(3.11) 
satisfies equations (2.6). 

In the last of (3.9), by choosing the negative sign we can avoid the infinity 
at r = 2m. 

The space-fike triad 2, t is now chosen to be 

~,= (( 1 ~o~m~'~ ,o0 0 - ~ )~[0  ~ml~'~ (~ m ~o, ~I~'~1~o, ~, 

{ -L-~ ,0 / )-3 l =  0 , 0 , r s i n  0 J 

such that the tetrad 2fl = (2, i, 2i), where 



FINITENESS OF RELATIVE ACCELERATION 241 

For 0.7)  the non-vanishing independent components of Rmjk are given 
by 

2m 
R1414 = r-- ~- 

R2~za/sin 2 0 -- -2mr 

m 
R1224 = Rla34/sin 2 0 = - - -  

r 

Now (3.10)-(3.12), when used in (2.4), give again the acceleration com- 
ponents to be 

2m m 
K l l  - -  = r a '  K2z-- K~3 = - ~  (3.13) 

K~a = 0 for ~ # fl 

Thus we find that the acceleration components remain the same in both 
systems of  coordinates, as is to be expected, for the physical components 
of  the curvature tensor do not depend on the choice of  the coordinate 
system. It is interesting to see that at r = 2m, though g** vanishes in both 
the systems, the fourth component of  the four-velocity dx~/ds is infinite in 
S coordinates whereas it is finite in E-F coordinates. 

After this paper was completed we saw a paper by J. D. Finley III (1971) 
wherein the author has arrived at a similar result regarding the finiteness 
of  the relative acceleration at r = 2m by using a more complicated tetrad. 

4. Conclusion 

As can be seen from the values of  the components of  relative acceleration 
between freely falling test particles (in radial collapse) at r = 2m nothing 
disastrous happens. On the other hand, as r --> 0 these accelerations tend 
to infinity. Since the signs are different for radial and transverse com- 
ponents, the particles get torn apart by the tidal effects as they approach 
the origin. 

The analysis made above can be very significant while we consider the 
motion of  an atom (like a hydrogen atom) sitting on the surface of a freely 
collapsing spherical body. If  we now consider the nucleus and the electron 
independently as two particles on different but infinitesimally close 
geodesics, we find that because of  the curvature there is a relative accelera- 
tion between them of strength as found above. This acceleration keeps on 
increasing proportional to 1/r a as the body collapses and the system of  
these two particles (atom) is subjected to tidal forces. It would be interesting 
to find out for what value of r (non-zero) the tidal accelerations take over 
the binding force of the atom causing the atom to split up. 
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